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Introduction 
More than a decade ago, the multiple receive coil 
concept (1,2) has been introduced to improve the 
signal-to-noise-ratio (SNR) and, as suggested rather 
early, to shorten the acquisition times. This 
approach is nowadays called “parallel imaging” , 
comprising the ideas of scan acceleration (3,4) and 
optimal coil-signal combination (2) and image 
uniformity correction (2).  
Equivalent to the development of parallel imaging, 
multiple transmit coils have been proposed to 
perform “parallel transmission” . The idea was 
triggered by the introduction of human high field 
proton MR systems, which showed B1 uniformity 
problems caused by dielectric resonance effects. 
Thus, multi-port excitation for birdcage-type coils 
was proposed as a measure to improve the RF 
homogeneity in the excited volume (5,6). The 
underlying hardware could basically be considered 
as a multi-element transmit coil array, which allows 
changing the phase and amplitude of the otherwise 
identical RF waveforms for the individual ports. 
Meanwhile the basic feasibility of this RF 
shimming concept has been shown (7-10).  
Triggered by these hardware developments and 
based on the analogy between RF pulse design and 
MR imaging (11,12), the principles of parallel 
imaging have recently been applied to RF 
transmission (13,14). Thus, RF pulses were 
proposed that are controlled by completely different 
time-courses in the individual transmit channels. 
This degree of freedom offers the possibility to 
improve spatially selective multi-dimensional RF 
pulses by, e.g., shortening the pulse duration, 
enhancing their spatial definition, or reducing their 
required RF power. Potential applications are: 
volume selective excitation (11,15,16) including 
outer volume signal suppression, curved slice 
imaging (17), or navigators employed for motion 
sensing (18). Furthermore, parallel transmission 
might ease the application of 3D RF pulses (19,20), 
which are limited by the finite lifetime of the 
transverse magnetization and the main field 
homogeneity. However, the compensation of 
patient induced RF inhomogeneities seems to 
emerge as a major application (21,22), particularly 
at high fields. 
 

 
This paper outlines the basic principle of parallel 
transmission with the special focus on RF pulse 
shortening. Basic aspects, initial experimental 
proofs, the role of noise error propagation and some 
considerations on coil design will be discussed. 
 
 
Theory 
In parallel MR imaging, k-space is often 
undersampled, while data acquisition is performed 
with a number of individual receive coils. The 
potentially resulting image artifact is avoided by 
taking the coil sensitivity information during image 
reconstruction into account. Consequently, the 
central question in parallel imaging might be 
formulated as: given a couple of measured, e.g. 
undersampled data sets from individual coils, how 
does one get a single, entire image? This question 
has been answered so far by Roemer(2), Sodickson 
(3) and Pruessmann (4). 
In analogy, in parallel transmission, each individual 
transmit coil could excite a specific magnetization 
pattern that could show artifacts, for example 
caused by subsampling of the excitation k-space or 
B1 non-uniformities. However, their parallel 
superposition should result in the desired artifact-
free magnetization pattern. Thus, the question is: 
which spatial patterns Pi(r), that could show 
undersampling effects, have to be excited by each 
of the N transmit coils, each exhibiting a 
characteristic sensitivity profile Si(r), to obtain the 
desired excitation pattern Pdes(r)? This constraint 
leads to Eq.[1], which turns out to be the central 
equation of parallel transmission: 
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Here, Pdes(r) is defined within the field of excitation 
(FoX), given on M spatial positions in a one-, two- 
or three-dimensional array. Equation [1] is linear 
and states that the superposition of all the individual 
pulse profiles Pi(r), weighted by the corresponding 
(complex) coil sensitivity profiles, should yield the 
desired excitation pattern. It is assumed, that the 
Si(r) are known by means of B1 mapping 



techniques (23-25). If the transmit coils can be used 
in the receive mode, methods known from parallel 
imaging can be employed, assuming the reciprocal 
principle holds (4). To derive the unknown RF 
waveforms B1i(t) for the N individual transmit coil 
elements from Eq.[1], the following three steps 
have to be performed. 
(A) Equation [1] has to be transformed into the 
Fourier domain (the excitation k-space). Thus, 
instead of the unknown Pi(r) given in Eq.[1], now 
the equation contains the unknown pi(k): 
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This step is performed because the B1 waveform 
that excites a desired magnetization pattern is just 
its Fourier transform sampled along the chosen 
excitation k-space trajectory multiplied by some 
trajectory dependent weighting coefficients. This is 
according to Pauly’s RF pulse design concept (11) 
based on the low tip angle approximation, which 
might hold for even higher flip angles (26) for 
special k-space trajectories. 
In a slightly different writing of Eq.[2] as given in 
ref. (27), only the Pi(r) in Eq. [1] is transformed to 
the Fourier domain, introducing the Fourier 
encoding matrix (A~exp(irk)): 
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This specific approach eases, e.g., the restriction of 
the excitation pattern Pdes(r) to a finite area inside 
the FoX. 
(B) To separate the wanted pi(k), Eq.[2] has to be 
“ inverted” , which is nontrivial in case of an 
arbitrary k-space trajectory. To facilitate inversion, 
the k-space transformed coil sensitivities si(k) are 
grouped into a single, “ invertible”  sensitivity matrix 
sfull. Additionally a corresponding single vector pfull 
is formed from the individual pi(k): 
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Then, this re-formulated equation can be solved 
using the pseudoinverse, which is the optimal 
solution in the least square sense: 
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The individual excitation patterns pi(k) can be 
extracted from pfull, which represents the general 
solution without any constraints. The separation of 
the pi(k) starting from Eq.[3] instead of Eq.[2] can 
be performed in an analog way. 

Now the special case of a Cartesian, echo-planar 
like k-space trajectory, which is uniformly under-
sampled in one dimension, is considered. 
Consequently, in the spatial domain only a limited 
number of voxels account for folding, which is 
described by the corresponding point spread 
function of the sampling scheme. As known from 
parallel imaging, this special case can be solved in 
the spatial domain (4) and leads to a small size of 
the sensitivity matrix to be inverted. This approach 
was chosen by Zhu (14) where the solution for the 
pi(k) is written as an integral over the FoX: 
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In this equation, the hi are derived from the 
inversion of a sensitivity matrix C(S1(r), S2(r), …, 
SN(r)) described in ref. (14). The inversion of this 
sensitivity matrix C is the central step of the 
approach and might be compared with the inversion 
of the matrix sfull (Eq.[4]). Both matrices sfull and C 
depend solely on the spatial sensitivity distributions 
Si, but differ in their detailed definitions (13,14). 
(C) Once the pi(k) are calculated via Eq.[5] or [6], 
the mapping between k and t according to the 
chosen k-space trajectory has to be performed. This 
yields the actual B1 waveforms applied in the time 
domain. The weighting function W(t) reflects the k-
space sampling density, which is constant for 
Cartesian trajectories and takes the k-space velocity 
(the actual gradient) into account (11). The wanted 
waveforms can be calculated for each individual 
coil via: 
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The resulting degree of freedom introduced by the 
use of multiple transmit coils can be exploited in 
several directions. A major application is given by 
the reduction of the pulse duration by a factor R, 
corresponding to the reduction of acquisition time 
in parallel imaging. Instead of reducing the pulse 
duration, the spatial definition of the excitation 
pattern can be increased without changing the pulse 
duration. Furthermore, system imperfections like B0 
inhomogeneities, k-space trajectory imperfections, 
concomitant gradients effects, etc. can be 
compensated for (12,28). 
A further interesting opportunity of using multiple 
transmit coils is to reduce the required RF power, 
and thus, the specific energy absorption rate (SAR) 
(13,29,30-32). The intrinsic freedom in solving 
Eq.[4] can be used to favors those solutions which 
exhibit the lowest RF power. 
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As mentioned above, a different form of parallel 
transmission is performed for the purpose of RF 
shimming, which is desirable especially for high 
field applications. Here, the amplitudes A i and 
phases φi of the otherwise identical B1 waveforms 
are adjusted for the different transmit array 
elements to yield optimal spatial excitation 
homogeneity (5-7). This is also described by Eq. 
[1]. The optimum A i and φi can be derived if the 
individual excitation pattern Pi(r) are replaced by 
constant weighting factors Fi = A i exp(iφi), which 
are spatially invariant. In this case, Eq. [1] can be 
solved for the Fi via a matrix inversion in the spatial 
domain choosing a constant Pdes(r). Obviously, a 
non-constant Pdes(r) might be chosen in this 
framework as well. 
 
 
Experimental Proof 
The theoretical development of parallel 
transmission preceded the corresponding 
experimental abilities by several years. However, 
experimental proofs of the basic principles have 
been realized using some work-arounds (13,14). 
Thus, parallel transmission was mimicked in 
sequential experiments using different transmit 
coils and making use of the linearity of the problem 
(c.f. Eq.[1]) by averaging their results after signal 
acquisition (Fig.1).  
 

 
 

 
 

Fig. 1. Parallel transmission - proof of principle (13). In 
a phantom experiment two different pre-defined 2D RF 
pulses (RF1, RF2) were applied, each with a different 
transmit coil using the same sub-sampled spiral k-
trajectory. Artefacts are visible. After signal summation 
the desired target magnetisation pattern is obtained. 
 
With the development of multi-element-transmit 
coils (33-35), parallel transmission has been used to 
perform RF shimming (7-10) by varying amplitudes 
and phases for the individual channels. However, a 
full verification of the entire concept was 
accomplished by the introduction of prototype MR 
systems (36,10) which allowed driving the RF 
waveform individually for each channel. Thus, 
spatially selective 2D RF pulses, using different k-

space trajectories, have been considerably 
accelerated (34,10).   
 
 
Error Propagation 
Noise that might degrade the performance of 
parallel transmission might originate from, e.g., the 
D/A converting process and RF amplifier 
imperfections. This system noise affects the 
individual pulse profiles Pi(r), and thus, influences 
the final result in a linear way as a superposition in 
the spatial domain (cf. Eq.[1]). Errors in the coil 
sensitivity profiles caused by noise or measurement 
imperfections also influence the final result linearly 
via Eq.[1]. It is important to note that the system 
noise does not interact with the central matrix 
inversion (see e.g., Eq.[5]). This is a crucial 
difference with respect to parallel imaging, where 
the system noise generated in the receive chain is 
enhanced if the matrix inversion is ill conditioned 
(4). In parallel imaging, the inverted matrix is 
multiplied with the measured data bearing noise. In 
parallel transmission, the inverted matrix is 
multiplied with the desired excitation pattern, 
which is free of noise (see Fig.2).  
 

 
 
Fig. 2. Schematic comparison of parallel transmission 
and parallel imaging. Experimental noise comes into 
play after / before the inversion of the sensitivity matrix, 
which leads to a larger robustness of parallel 
transmission than parallel imaging.  
 
In that respect, the concept of the geometry factor 
as deduced for parallel imaging (4) cannot be 
adapted directly to parallel transmission. 
If the inverse problem of parallel transmission is ill 
posed, the superposition of Eq.[1] does not lead to a 
complete cancellation of the subsampling artifacts, 
and noise-like aliasing structures appear in the final 
result. The problem becomes ill posed if the spatial 
frequency components of the actual coil sensitivity 
profiles are not able to compensate for the missing 
parts of a reduced k-space trajectory. Thus, a proper 
interplay between the coil sensitivity profiles and 
the involved trajectories has to be found. From this 



interplay, conditions for the sensitivity profiles, and 
thus, the used coil array can be derived. 
 
 
Coil design and SAR aspects 
It is important to know how sensitive the RF pulse 
performance depends on the transmit coil array 
geometry. Due to the different error propagation 
behavior compared to parallel imaging, parallel 
transmission should be less sensitive. This was 
confirmed recently by corresponding simulations, 
which showed that RF pulse performance is in 
general rather robust (37) against variations of the 
transmit coil array configuration and becomes 
critical only for very artificial cases. 
On the other hand, if the sensitivity matrix sfull to be 
inverted becomes ill posed, the norm of the 
resulting vector pfull, containing the RF waveforms, 
may increase (c.f. Eq.[4]). This increase would lead 
to an increase of the required RF power and the 
SAR, respectively. Thus, SAR could serve as an 
important coil design criterion. However, it has 
been found, that the RF pulse performance proves 
to be fairly stable (37,38) and thus, the question of 
an ill posed inverse problem plays only a minor role 
in parallel transmission. This gives rise to a much 
larger freedom in designing coil arrays for parallel 
transmission than for parallel imaging.  
 
 
 
Summary 
Parallel transmission follows the development of 
parallel imaging. Parallel transmission can be used 
to shorten the duration of spatially selective RF 
pulses or to increase their spatial resolution 
definition maintaining the pulse duration. Other 
applications envisaged might be the reduction of the 
required RF power, i.e. the SAR, or RF shimming. 
In parallel imaging and transmission it is necessary 
to determine and invert a matrix derived from the 
spatial sensitivities of the coils involved. However, 
parallel transmission is not just the reciprocal 
version of parallel imaging. As a consequence of 
this asymmetry, it seems that the error propagation 
in parallel transmission does not lead to pronounced 
non-linear effects as in parallel imaging, described 
by the geometry factor. 
Very likely, future standard high-field MR systems 
will be capable of parallel transmission. These MR 
systems will be able to improve RF pulse 
performance in many respects, thus opening a wide 
range of new and exciting applications. 
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